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Gkeyll Overview

Prototype code to explore advanced algorithms for continuum edge
gyrokinetic simulation (e.g. edge plasma turbulence)

Emphasis on using energy-conserving schemes

Main code is written in C++

Lua scripts for simulations

Goal

A robust code capable of running very quickly at coarse velocity space resolution

while preserving all conservation laws of gyrokinetic/gyrofluid equations and

giving fairly good results.
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Background

Previously, Gkeyll’s Poisson bracket solver was formulated for two

dimensions (1x + 1v and 2x)

Goal of this work is to extend Gkeyll’s Poisson bracket solve capabilities to

handle general Hamiltonian systems in 2x + 2v and 3x + 2v

Algorithm (an extension of the work of Liu and Shu1) conserves energy
exactly even with upwinding and is stable in the L2 norm of the distribution
function f

Allow distribution function to be discontinuous

Hamiltonian is in the continuous subset of space used for f

1J.-G. Liu and C.-W. Shu. “A High-Order Discontinuous Galerkin Method for 2D

Incompressible Flows”. In: Journal of Computational Physics 160.2 (2000), pp. 577 –596.

ISSN: 0021-9991.
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Evolution Equation

The Poisson bracket operator is defined as

{f , g} =
∂f

∂z i
Πij

∂g

∂z j
.

We are interested in solving conservative equations of the form

∂(J f )
∂t

+∇ · (Jαf ) = 0,

where ∇ is the phase-space gradient operator and α is the phase space velocity

vector whose components are defined as

αi = ż i = {z i ,H} = Πij
∂H

∂z j
.

Eric Shi Extension of Gkeyll to 2D APS DPP Meeting 4 / 19



Discontinuous Galerkin Solutions

Discontinuous Galerkin schemes use discontinuous function spaces (usually

made of polynomials) to represent the solution.
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Figure: The best L2 fit of x4 + sin(5x) (green) using piecewise constant (left), linear

(center), and quadratic (right) polynomials.
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Discretization of the Evolution Equation Using DG

Introduce a mesh Kj of the domain K .

Find fh in the space of discontinuous piecewise polynomials such that for all

basis functions φk , we have

fh(x , y , v‖, µ, t) =
∑
k

fk(t)φk(x , y , v‖, µ)∫
Kj

Jhφk
∂fh
∂t
dz =

∫
Kj

Jh∇φk · αhfhdz−
∮
∂Kj

Jhφ−k n · αhF̂ dS

Here, F̂ = F̂ (f +h , f
−
h ) is the consistent numerical flux on surface ∂Kj and Jh

has been taken to be time-independent.
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ETG Test Problem Description

Model problem involves curvature-driven ETG instabilities and turbulence in

a local 2D (2x+2v) limit

Simulation domain is a small box of size ∆R ×∆R on the outer midplane

of a tokamak

Axisymmetry in toroidal direction

Parallel gradients of f are ignored

Use set of coordinates (x , y , v‖, µ), where

x is the radial coordinate

y is the vertical coordinate

Goals are to reproduce linear growth rate of instability and produce 2D

turbulent nonlinear saturation
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Physical Parameters Based on Cyclone Base Case2

Symbol Expression Value

∆R 32ρs 1.819× 10−3 m

ρs cs/Ωci 5.683× 10−5 m

B0 1.91 T

a 0.4701 m

R0 1.313 m

R R0 + 0.5a 1.548 m

LT R/10 0.1548 m

n0 4.992× 1019 m−3

Ti0 = Te0 2.072 keV

2A. M. Dimits et al. “Comparisons and physics basis of tokamak transport models and

turbulence simulations”. In: Physics of Plasmas 7.3 (2000), pp. 969–983.
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Test Problem Equations

Hs =
1

2
msv

2
‖ + µB + qsφ b = ẑ

µ =
mv2
⊥

2B
B∗ = B+

Bv‖

Ωs
∇× b⇒ B−

msv‖

qsx
ŷ

Ωs =
qsB

ms
B∗‖ = b · B∗ ⇒ B

Π =


0 − 1

qsB∗‖
0 0

1
qsB∗‖

0
B∗y
msB∗‖

0

0 − B∗y
msB∗‖

0 0

0 0 0 0

 J = msB
∗
‖ ⇒ msB

Potential solved for by assuming adiabatic ions and using quasineutraility:

−ni0(x0)
qi
Ti0

φ(x , y , t) = ne(x , y , t)− ni0(x),

where ni0(x0) is the value of the ion density in the center of the simulation
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Grid Resolution and Boundary Conditions

Initial simulations represent solution using piecewise linear basis functions

Plan to investigate use of higher-order polynomials, Maxwellian-weighted

basis functions in future

Boundary conditions:

Zero flux BCs in v‖ and µ on f

Periodic BCs in x and y on fluctuating components of φ and f

Coordinate Number of Cells Minimum Maximum

x Nx R R + ∆R
y Ny −∆R/2 ∆R/2

v‖ Nv‖ -min

(
4, 2.5

√
Nv‖

4

)
vTe min

(
4, 2.5

√
Nv‖

4

)
vTe

µ Nµ = Nv‖/2 0 min

(
16, 4

√
Nµ
2

)
mv2
Te

2B0
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Initial Conditions

fe(x , y , v‖, µ) =
ne(x , y)

[2πTe0(x)/m]3/2
exp

[
−
mv2
‖

2Te0(x)

]
exp

[
−
µB(x)

Te0(x)

]
Te0(x , y) = Te0

(
1−
x − R
LT

)
ni0(x) = n0

Ti0(x) = Ti0

For linear simulations, we initialize a perturbation with a single ky mode:

ne(x , y) = n0

[
1 + 10−3 ρe

LT
cos(ky ,miny)

]
.

For nonlinear simulations, a spectrum of kx modes are included:

ne(x , y) = n0

{
1 + 10−2 ρe

LT
cos(ky ,miny) exp

[
(x − x0)2

2σ2

]}
, σ = ∆R/4.
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Linear Dispersion Relation for ITG/ETG in Local

(k‖ = 0) Toroidal Limit

The dispersion relation for the system can be derived as3

−n0a
qaφ

Ta
= −n0s

qsφ

Ts

∫
d3v F0

ω − ωT∗
ω − ωdv

= −n0s
qsφ

Ts

[
R0

(
ω

ωd

)
+
R

Ln
R1

(
ω

ωd

)
+
R

LT
R2

(
ω

ωd

)]
,

where ωT∗ = ω∗[1 + (Ln/LT )(v2
‖ /2v2

t + µB/v2
t − 3/2)], ωdv = ωd(v2

‖ + µB)/v2
t ,

ωd = kyρevt/R.

Here, the subscript a refers to the adiabatic species and the subscript s refers to

the kinetic species.

3M. A. Beer and G. W. Hammett. “Toroidal gyrofluid equations for simulations of

tokamak turbulence”. In: Physics of Plasmas 3.11 (1996), pp. 4046–4064.
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Linear Dispersion Relation for ITG/ETG in Local

(k‖ = 0) Toroidal Limit

Neglecting FLR effects, the three parts of the ion response function can be

written in terms of the plasma dispersion function4:

R0(x) = 1−
x

2
Z 2

(√
x

2

)
R1(x) =

1

2
Z 2

(√
x

2

)
R2(x) =

(
x

2
−

1

2

)
Z 2

(√
x

2

)
+

√
x

2
Z

(√
x

2

)
.

Using n0a = n0s , and qa/qs = −1, the dispersion relation is

0 = D(ω) = R0

(
ω

ωd

)
+
R

Ln
R1

(
ω

ωd

)
+
R

LT
R2

(
ω

ωd

)
+
Ts
Ta
.

4H. Biglari, P. H. Diamond, and M. N. Rosenbluth. “Toroidal ion pressure gradient driven

drift instabilities and transport revisited”. In: Physics of Fluids B: Plasma Physics 1.1 (1989),

pp. 109–118.
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Linear Growth Rate Tests
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Figure: A linear growth rate for the ETG instability can be extracted from the φrms vs.

t plot and compared with the exact value.

For R/Ln = 0 using Nx = 4, Ny = 8, Nv‖ = 16, and Nµ = 8:

R/LT γsim/γexact
20 1.045

10 1.095

5 1.435
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Linear Growth Rate: Convergence

Parallel Velocity Cells (/ Perpendicular Velocity Cells)
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Figure: Convergence of numerical linear growth rate for R/LT = 20 as the number of

cells in v‖ and µ is increased. Nµ = Nv‖/2. Convergence is expected to improve greatly

when Maxwellian-weighted basis functions are implemented.
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Nonlinear Turbulent Saturation

t (sec) #10-5
0 0.5 1 1.5 2 2.5

?
rm

s (
V

)

10-4

10-3

10-2

10-1

100

101

102

R/L
T
 = 4

R/L
T
 = 6

R/L
T
 = 8

R/L
T
 = 10

Figure: Plot of φrms vs t for simulations performed at various R/LT values using

NX = 8, NY = 8, Nv‖ = 4, Nµ = 2.
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Nonlinear Turbulent Saturation (R/LT = 8)
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Figure: Plot of ne − ne0 at various times. NX = 8, NY = 8, Nv‖ = 4, Nµ = 2.
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Nonlinear Turbulent Saturation (R/LT = 4)
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Figure: Plot of ne − ne0 at various times. NX = 8, NY = 8, Nv‖ = 4, Nµ = 2.
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Conclusions

We are able to observe linear growth rates that converge to the correct

values

Nonlinear runs look qualitatively reasonable and reach turbulent saturated

states

Future plans:

Implement Maxwellian-weighted basis functions in µ and v‖
Solve Poisson equation for potential

Add support for more complicated geometries e.g. non-rectangular and

non-uniform meshes

Run tests with a third spatial dimension (3x + 2v)
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